Transforming First-Order Functional Programs to Intensional Programs of Nullary Variables: Theoretical Foundations

P. Rondogiannis W. W. Wadge

Abstract

In this paper we present a revised formulation and a correctness proof of Yaghi’s [18] transformation algorithm from first-order extensional programs to intensional programs of nullary variables. The formal definition of the algorithm is a functional one, and its main difference from the one given in [18] is that if two expressions in the source program are identical, then they are assigned identical intensional expressions during the translation. The correctness proof of the algorithm is established by showing that a function call in the extensional program has—informally speaking—the same meaning as the intensional expression that results from its translation.

1 Introduction

The first work to establish a transformation algorithm from extensional to intensional programs was A. Yaghi’s Ph.D. dissertation [18]. Motivated by Montague’s intensional logic [15, 4], Yaghi first defined a simple intensional programming language whose syntax only allowed nullary variable definitions. He then proposed an algorithm for transforming first-order functional programs into programs of this language.

Yaghi’s work, apart from its theoretical significance, had practical implications as well: the resulting intensional programs can be interpreted in a very simple way. In fact, the Lucid functional-dataflow language [2, 3, 17, 1], other Lucid-related systems [5, 6], as well as standard functional languages [10, 12], have been successfully implemented based on this approach. However, there are two important aspects of the technique that were not developed in [18]:

- The transformation algorithm from extensional to intensional programs, presented in [18], is semi-formal and non-functional.
- A correctness proof of the transformation is not given in [18] and has remained an open problem since then.

It is the purpose of this paper to resolve the above two issues, establishing in this way a semantics-preserving transformation from extensional to intensional programs. The rest of the paper is organized as follows: §2 outlines Yaghi’s transformation algorithm. In §3–4, we present an alternative formulation of the algorithm, and illustrate it by examples. The correctness proof for the transformation is given in §5, and the paper concludes by discussing the main points of our work.

In the following sections, we assume a basic familiarity with the work described in [18], as well as an understanding of domain theory and denotational semantics [13, 14, 7].

2 Yaghi’s Transformation Algorithm

This section presents an outline of Yaghi’s transformation algorithm. The source extensional language under consideration is a first-order subset of ISWIM [8], referred to as Iwade in [18]. Intuitively, Iwade does not allow nested where clauses and requires that all variables in a program be distinct. The target intensional language is referred to as DE in [18], and it only allows nullary variable definitions. Moreover, DE is enriched with a set of intensional operators, which play an important role in the translation process. For precise formal definitions of Iwade and DE, see [18, p.3–3] and [18, pp.2–38,3–23], respectively. The transformation algorithm can be outlined as follows:

- Let \(f \) be a function appearing in the source extensional program. Number the textual occurrences of calls to \(f \) in the program, starting at 0\(^1\) (including calls in the body of the definition of \(f \)).

- Replace the \(i \)-th call of \(f \) in the program by \(\text{call}_i(f) \). Remove the formal parameters from the definition of \(f \), so that \(f \) is defined as an ordinary individual variable.

- Introduce a new definition for each formal parameter of \(f \). The right-hand side of the definition is the operator \text{actuals} applied to a list of the actual parameters corresponding to the formal parameter in question, listed in the order in which the calls are numbered.

To illustrate the algorithm, consider the following simple first-order extensional program:

\[
\begin{align*}
\text{result} & \doteq f(4) + f(5) \\
f(x) & \doteq g(x + 1) \\
g(y) & \doteq y
\end{align*}
\]

The following intensional program is obtained, when the algorithm is applied:

\[
\begin{align*}
\text{result} & \doteq \text{call}_0(f) + \text{call}_1(f) \\
f & \doteq \text{call}_0(g) \\
g & \doteq y \\
x & \doteq \text{actuals}(4,5) \\
y & \doteq \text{actuals}(x + 1)
\end{align*}
\]

In the following we give a brief informal description of the semantics of DE programs (for a precise definition, see [18]). In general, the semantics of Iwade and DE programs are defined using standard techniques. Their only difference is that the underlying domain of the latter is a much richer one than the domain of the former. More specifically, if \(D \) is the domain of the source Iwade programs, then the domain of the target DE programs is \((W \to D)\), where \(W \) is the set \(\text{List}(\mathbb{N}) \) of lists of natural numbers. Elements of \((W \to D)\) are called intensions. Therefore, \text{call} and \text{actuals} are operators that take as arguments intensions. The corresponding semantic equations associated with these two operations are [18]:

\[
(\text{call}_i(a))(w) = a(i : w)
\]

\[
(\text{actuals}(a_0, \ldots, a_{n-1}))(i : w) = (a_i)(w)
\]

where \(a, a_0, \ldots, a_{n-1} \in (W \to D) \), \(w \in W \), and “:” is the usual consing operation on lists. Moreover, the semantic interpretation of constant symbols appearing in DE programs is defined in a pointwise way in terms of the interpretation of the corresponding constants that appear in Iwade programs [18].

\(^1\)Yaghi’s counting starts at 1, however here we will start at 0.
3 A Revised Formulation of Yaghi’s Algorithm

The main idea behind Yaghi’s approach is that every function call in the source program will be translated into a unique intensional expression. This means that even if two function calls in a program are syntactically identical, they will be given different translations, as the following example illustrates:

Example 1. Consider the following first-order extensional program:

\[
\text{result} \doteq f(10) + f(10) \\
\text{f}(x) \doteq x + 1
\]

The algorithm described in [18] would translate the above program as follows:

\[
\text{result} \doteq \text{call}_{0}(f) + \text{call}_{1}(f) \\
\text{f} \doteq x + 1 \\
\text{x} \doteq \text{actuals}(10, 10)
\]

However, such a translation is not natural and proves quite difficult to formalize. Therefore, we revise Yaghi’s algorithm so as to operate in a “referentially transparent” way: identical function calls should be assigned identical intensional expressions. For this purpose, we will use a Gödel numbering function. Let Exp be the set of expressions of programs of Iwade. Then:

Theorem 1 ([9, pp.242–3]). There exists a one-to-one map \(\lceil \cdot \rceil : \text{Exp} \to \mathbb{N} \). For every \(E \in \text{Exp} \), \(\lceil E \rceil \) is called the Gödel number of \(E \).

The Gödel numbering captures the situation described above: it assigns different numbers to syntactically different function calls, but assigns the same number to indistinguishable calls.

Example 2. Consider again the extensional program in Example 1. Let \(\lceil f(10) \rceil = \ell \in \mathbb{N} \). Then the translation of the expression \(f(10) + f(10) \) under the Gödel numbering scheme will be \(\text{call}_{\ell}(f) + \text{call}_{\ell}(f) \).

We are now in a position to formally define the revised transformation algorithm. For simplicity, we assume that the only nullary variable defined in \(P \) is the distinguished variable \(\text{result} \). Moreover, we also assume that the only variables that can appear in \(P \) are the functional variables defined in \(P \) as well as their formal parameters.

The following definitions will be used in the rest of the paper.

Definition 1. Let \(u : A \to B \) and \(\rho : S \to B \), where \(S \subseteq A \). Then the perturbation \(u \oplus \rho \) of \(u \) with respect to \(\rho \) is defined as:

\[
(u \oplus \rho)(x) = \begin{cases} \\
\rho(x), & \text{if } x \in S \\
u(x), & \text{otherwise.}
\end{cases}
\]

Definition 2. Let \(I \) and \(S \) be sets. An \(I \)-indexed sequence is any function \(s : I \to S \) and is denoted by \((s_i)_{i \in I} \).

Let \(P \) be a first-order extensional program, \(\text{Sub}(P) \) be the set of subexpressions of \(P \) and \(\text{func}(P) \) be the set of functions defined in \(P \). Let \(f \in \text{func}(P) \). Then:

- The set of labels of calls to \(f \) in \(P \) is defined as:

\[
\text{labels}(f, P) = \{ [f(E_0, \ldots, E_{n-1})] \mid f(E_0, \ldots, E_{n-1}) \in \text{Sub}(P) \}.
\]

- The selector function \(\odot \) on labels is defined as:

\[
[f(E_0, \ldots, E_{n-1})] \odot j = E_j, \ j \in 0..n - 1.
\]
The transformation from extensional expressions to intensional ones is performed by the following recursively-defined function \(\mathcal{E} \):

\[
\begin{align*}
E &= x \\
\mathcal{E}(E) &= x \\
E &= c(E_0, \ldots, E_{n-1}) \\
\mathcal{E}(E) &= c(\mathcal{E}(E_0), \ldots, \mathcal{E}(E_{n-1})) \\
E &= f(E_0, \ldots, E_{n-1}) \\
\mathcal{E}(E) &= \text{call}^{\mathcal{E}}(f)
\end{align*}
\]

Given a program \(P \) and a function \(f(x_0, \ldots, x_{n-1}) \doteq B_f \) defined in \(P \), the function \(\mathcal{A}_f \) is used to create a set of new definitions, one for every formal parameter of \(f \):

\[
I = \text{labels}(f, P)
\]

\[
\mathcal{A}_f(P) = \bigcup_{j=0}^{n-1} \{ x_j \doteq \text{actuals}\{ i \mapsto \mathcal{E}(i \circ j) \mid i \in I \} \}
\]

Notice that the \text{actuals} operator we adopt is more general than the one used in [18]. In our case, \text{actuals} takes as argument a sequence of expressions indexed by a set \(I \subseteq \mathbb{N} \). In Yaghi’s case, the set \(I \) is always equal to \(0 \ldots n-1 \) for some \(n \in \mathbb{N} \).

The function \(D \) removes the formal parameters from a function definition and at the same time uses \(\mathcal{E} \) to process the body of the definition.

\[
F = (f(x_0, \ldots, x_{n-1}) \doteq B_f)
\]

\[
D(F) = (f \doteq \mathcal{E}(B_f))
\]

The overall transformation can be described as follows:

\[
\text{Trans}(P) = \left(\bigcup_{f \in \text{func}(P)} \mathcal{A}_f(P) \right) \cup \left(\bigcup_{F \in P} \{ D(F) \} \right)
\]

This completes the presentation of the transformation algorithm. In the following section, example transformations that illustrate the above definitions are given.

4 Example Transformations

In this section, we give two examples of the transformation algorithm. The first one is a simple non-recursive function, while the second one is a recursively-defined factorial function.

Example 3. Consider the following simple first-order extensional program \(P \):

\[
\begin{align*}
\text{result} &\doteq f(f(10)) \\
f(x) &\doteq x + 1
\end{align*}
\]

Assume that \(\lceil f(f(10)) \rceil = \ell_0 \) and that \(\lceil f(10) \rceil = \ell_1 \), where \(\ell_0, \ell_1 \in \mathbb{N} \). Therefore, \text{labels}(P) = \{ \ell_0, \ell_1 \}. In order to compute \text{Trans}(P) it suffices to compute the sets (\(\bigcup_{F \in P} \{ D(F) \} \)) and \(\mathcal{A}_f(P) \).

The first set can be computed using the definition of \(\mathcal{E} \) and contains the following two definitions:

\[
\begin{align*}
\text{result} &\doteq \text{call}_{\ell_0}(f) \\
f &\doteq x + 1
\end{align*}
\]
The set $A_f(P)$ contains only one definition, corresponding to the formal parameter x of f.

$$A_f(P) = \{ x \mapsto \text{actuals}\{ \ell_0 \mapsto E(\ell_0 \odot 0), \; \ell_1 \mapsto E(\ell_1 \odot 0) \} \}$$

$$= \{ x \mapsto \text{actuals}\{ \ell_0 \mapsto E(f(10)), \; \ell_1 \mapsto E(10) \} \}$$

$$= \{ x \mapsto \text{actuals}\{ \ell_0 \mapsto \text{call}_\ell_1(f), \; \ell_1 \mapsto 10 \} \}$$

Therefore, the resulting program of nullary variable definitions is the following:

$$\text{result} \doteq \text{call}_\ell_0(f)$$

$$f \doteq x + 1$$

$$x \doteq \text{actuals}\{ \ell_0 \mapsto \text{call}_\ell_1(f), \ell_1 \mapsto 10 \}$$

Example 4. Consider the following recursive first-order extensional program P:

$$\text{result} \doteq \text{fact}(3)$$

$$\text{fact}(n) \doteq \text{if } n \leq 1 \text{ then } 1 \text{ else } n \ast \text{fact}(n - 1)$$

Assume that $[\text{fact}(3)] = \ell_0$ and that $[\text{fact}(n - 1)] = \ell_2$. The two definitions of the initial first-order extensional program become, after they are processed by D:

$$\text{result} \doteq \text{call}_\ell_0(\text{fact})$$

$$\text{fact} \doteq \text{if } n \leq 1 \text{ then } 1 \text{ else } n \ast \text{call}_\ell_1(\text{fact})$$

The set $A_{\text{fact}}(P)$ contains only one definition for the formal parameter n:

$$A_{\text{fact}}(P) = \{ n \doteq \text{actuals}\{ \ell_0 \mapsto 3, \ell_1 \mapsto n - 1 \} \}$$

Therefore, the final intensional program consists of the following set of definitions:

$$\text{result} \doteq \text{call}_\ell_0(\text{fact})$$

$$\text{fact} \doteq \text{if } n \leq 1 \text{ then } 1 \text{ else } n \ast \text{call}_\ell_1(\text{fact})$$

$$n \doteq \text{actuals}\{ \ell_0 \mapsto 3, \ell_1 \mapsto n - 1 \}$$

5 Correctness Proof

The correctness proof of the transformation algorithm is established by Theorems 2, 3 and 4 to follow. Recall that we have made the assumption that the source functional language does not allow individual variable definitions (except for the distinguished variable result). Moreover, the only individual variables that can appear in the right-hand side of a definition are the formal parameters of the function being defined.

The main idea of the proof is to relate semantically a function call in the source first-order extensional program with the corresponding intensional expression that results from its translation. For example, given a first-order extensional program P, we would like to give a semantic statement concerning a call $E = f(E_0, \ldots, E_{n-1})$ in P, and its translation $\text{call}_{[E]}(f)$ in $\text{Trans}(P)$. Let u and \hat{u} be the least environments satisfying the definitions in P and $\text{Trans}(P)$, respectively, and let $w \in W$. The idea is to prove the following statement:

$$\text{call}_{[E]}(\hat{u}(f))(w) = u(f)([E(E_0)](\hat{u})(w), \ldots, [E(E_{n-1})](\hat{u})(w)).$$

This looks like a weaker result that what we are actually looking for, because the right-hand side does not correspond exactly to the expression $f(E_0, \ldots, E_{n-1})$ of the extensional program. However, a stronger result can be shown afterwards using an inductive argument, as we are going to see. It turns out that the above statement cannot itself be shown in one step. Instead, we need to show that the right-hand side approximates the left, and vice versa. The details of the proof are given below.
Theorem 2. Let \(P \) be a first-order extensional program and let \(u \) be the least environment satisfying the definitions in \(P \). Let \(\hat{u} \) be the least environment satisfying the definitions in the translated program \(\text{Trans}(P) \). Then, for every function definition \((f(x_0, \ldots, x_{n-1}) = B_f)\) in \(P \), for every function call \(E = f(E_0, \ldots, E_{n-1}) \) of \(f \) in \(P \), and for every \(w \in W \):

\[
\{ \text{call}_E(\hat{u}(f)) \}(w) \subseteq u(f)(\{ \mathcal{E}(E_0) \}(\hat{u})(w), \ldots, \{ \mathcal{E}(E_{n-1}) \}(\hat{u})(w)).
\]

Proof. The theorem is established by induction on the approximations \(\hat{u}_k \), \(k \in \mathbb{N} \), of \(\hat{u} \). In other words, we show that for every \(k \geq 0 \), for every function \(f \) defined in \(P \), for every function call \(E = f(E_0, \ldots, E_{n-1}) \) of \(f \) in \(P \), and for every \(w \in W \):

\[
\{ \text{call}_E(\hat{u}_k(f)) \}(w) \subseteq u(f)(\{ \mathcal{E}(E_0) \}(\hat{u}_k)(w), \ldots, \{ \mathcal{E}(E_{n-1}) \}(\hat{u}_k)(w)).
\]

Notice that we only use the approximations of \(\hat{u} \) but not the approximations of \(u \). Intuitively, this gives to the right-hand side of the above statement an “advantage”, which allows the \(\subseteq \) relation to be established. The basis case is for \(k = 0 \), and it holds trivially because the left-hand side of the above statement is equal to the bottom value. We assume the above statement holds for \(k \) and we show that it holds for \(k + 1 \), i.e.,

\[
\{ \text{call}_E(\hat{u}_{k+1}(f)) \}(w) \subseteq u(f)(\{ \mathcal{E}(E_0) \}(\hat{u}_{k+1})(w), \ldots, \{ \mathcal{E}(E_{n-1}) \}(\hat{u}_{k+1})(w)).
\]

Using the semantics of \(\text{call} \), the above statement can be rewritten as follows:

\[
\hat{u}_{k+1}(f)([E] : w) \subseteq u(f)(\{ \mathcal{E}(E_0) \}(\hat{u}_{k+1})(w), \ldots, \{ \mathcal{E}(E_{n-1}) \}(\hat{u}_{k+1})(w)).
\]

Recalling that \(f(x_0, \ldots, x_{n-1}) = B_f \) in \(P \) and \(f \vdash \mathcal{E}(B_f) \) in \(\text{Trans}(P) \), and using the definition of \(\hat{u}_{k+1} \) in terms of \(u_k \) (see, for example, [14]), the above is equivalent to the following:

\[
\{ \mathcal{E}(B_f) \}(\hat{u}_k)([E] : w) \subseteq [B_f](u \oplus \rho_{k+1}),
\]

where \(\rho_{k+1}(x_j) = [\mathcal{E}(B_f)](\hat{u}_{k+1})(w), j = 0..n-1 \). The above can be established by showing that for every subexpression \(S \) of \(B_f \), we have:

\[
[\mathcal{E}(S)](\hat{u}_k)([E] : w) \subseteq [S](u \oplus \rho_{k+1}).
\]

We therefore perform a structural induction on \(S \).

Structural Induction Basis. Case \(S = x_j \in \{ x_0, \ldots, x_{n-1} \} \). Then, in the intensional program \(\text{Trans}(P) \), a definition of the form \(x_j = \text{actuals}(I) \) of \(x_j \) has been created, where \(I = \text{labels}(f, P) \). We have:
\[[\mathcal{E}(\mathcal{S})][\hat{u}_k](\mathcal{E} : w) \]
\[= [\mathcal{E}(\mathcal{S}_0, \ldots, \mathcal{S}_{n-1})][\hat{u}_k](\mathcal{E} : w) \]
(Definition of \(\mathcal{E}\))
\[= [\mathcal{E}(\mathcal{S}_0), \ldots, \mathcal{E}(\mathcal{S}_{n-1})][\hat{u}_k](\mathcal{E} : w) \]
(Semantics of constant symbols)
\[= C'(c)([[\mathcal{E}(\mathcal{S}_0)][\hat{u}_k], \ldots, [\mathcal{E}(\mathcal{S}_{n-1})][\hat{u}_k]](\mathcal{E} : w)) \]
(Semantics of \(c\) in terms of \(C'\))
\[= [\mathcal{C}(\mathcal{S}_0, \ldots, \mathcal{S}_{n-1})][u \oplus \rho_{k+1}] \]
(Structural induction hypothesis and monotonicity of \(\mathcal{C}\))
\[= [\mathcal{C}(\mathcal{S}_0, \ldots, \mathcal{S}_{n-1})][u \oplus \rho_{k+1}] \]
(Semantics of constant symbols)
\[= [\mathcal{S}][u \oplus \rho_{k+1}] \]
(Assumption for \(\mathcal{S}\)).

Case \(\mathcal{S} = g(\mathcal{S}_0, \ldots, \mathcal{S}_{r-1})\), where \(g \in \text{func}(\mathcal{P})\). Assume that the definition of \(g\) in \(\mathcal{P}\) is

\[g(y_0, \ldots, y_{r-1}) \doteq B_g. \]
Then, by the transformation algorithm, the definition for \(g \) is \(\text{Trans}(P) \) is \(g \equiv \mathcal{E}(B_g) \). We have:

\[
[\mathcal{E}(S)](\hat{u}_k)([E] : w) = [\mathcal{E}(g[S_0, \ldots, S_{r-1}])](\hat{u}_k)([E] : w)
\]

(Assumption for \(S \))

\[
[\mathcal{E}(g[S_0, \ldots, S_{r-1}])](\hat{u}_k)([E] : w)
\]

(Definition of \(\mathcal{E} \))

\[
(\text{call}_{[S]}(g))(\hat{u}_k)([E] : w)
\]

(Semantics of application)

\[
\subseteq u(g)([\mathcal{E}(S_0)](\hat{u})([E] : w), \ldots, [\mathcal{E}(S_{r-1}])(\hat{u})([E] : w))
\]

(Outer induction hypothesis on \(k \))

\[
\subseteq u(g)([S_0](u \oplus \rho_{k+1}), \ldots, [S_{r-1}](u \oplus \rho_{k+1}))
\]

(Structural induction hypothesis and monotonicity of \(u(g) \))

\[
[g(S_0, \ldots, S_{r-1})](u \oplus \rho_{k+1})
\]

(Semantics of application)

\[
[S](u \oplus \rho_{k+1})
\]

(Because \(S = g(S_0, \ldots, S_{r-1}) \)).

This completes the proof of the theorem.

\[\square \]

Theorem 3. Let \(P \) be a first-order extensional program and let \(u \) be the least environment satisfying the definitions in \(P \). Let \(\hat{u} \) be the least environment satisfying the definitions in the translated program \(\text{Trans}(P) \). Then, for every function definition \((f(x_0, \ldots, x_{n-1}) \equiv B_f) \) of \(f \) in \(P \), for every function call \(E = f(E_0, \ldots, E_{n-1}) \) in \(P \), and for every \(w \in W \):

\[
u(f)([\mathcal{E}(E_0)](\hat{u})(w), \ldots, [\mathcal{E}(E_{n-1})](\hat{u})(w)) \subseteq (\text{call}_{[E]}(\hat{u}(f)))(w).
\]

Proof. The theorem is established by induction on the approximations \(u_k, k \in \mathbb{N} \), of \(u \). The proof is similar to the one given for Theorem 2.

\[\square \]

Lemma 1. Let \(P \) be a first-order extensional program and let \(u \) be the least environment satisfying the definitions in \(P \). Let \(\hat{u} \) be the least environment satisfying the definitions in the translated program \(\text{Trans}(P) \). Then, for every function definition \(f(x_0, \ldots, x_{n-1}) \equiv B_f \) in \(P \), for every function call \(E = f(E_0, \ldots, E_{n-1}) \) in \(P \), and for every \(w \in W \):

\[
(\text{call}_{[E]}(\hat{u}(f)))(w) = u(f)([\mathcal{E}(E_0)](\hat{u})(w), \ldots, [\mathcal{E}(E_{n-1})](\hat{u})(w)).
\]

Theorem 4. Let \(P \) be a first-order extensional program and let \(u \) be the least environment satisfying the definitions in \(P \). Let \(\hat{u} \) be the least environment satisfying the definitions in the translated program \(\text{Trans}(P) \). Then, for every \(w \in W \):

\[
u(\text{result}) = \hat{u}(\text{result})(w).
\]

Proof. By a structural induction on the defining expression of the variable \(\text{result} \) in \(P \) and using Lemma 1.

\[\square \]

6 An Illustration of the Proof

To illustrate the technique used for the proof, consider the program that was given in Example 3. We show how the theorem can be applied to the outer call to function \(f \) in that example. Similar
arguments apply for the inner call to f. It suffices to show that for every $k \geq 0$, we have:

$$call_{\ell_0}(\hat{u}_k(f))(w) \sqsubseteq u(f)([call_{\ell_1}(f)][\hat{u}_k](w))$$

$$u_k(f)([call_{\ell_1}(f)][\hat{u}](w)) \sqsubseteq call_{\ell_0}(\hat{u}(f))(w)$$

Using the technique for computing the least environment from its approximations (see for example [14]), one can compute the values of \hat{u}_k and u_k for various values of $k \in \mathbb{N}$. For example, the validity of the first of the above statements for $k = 0$ can be shown by evaluating the left-hand side of the statement:

$$call_{\ell_0}(\hat{u}_0(f))(w) = \hat{u}_0(f)(\ell_0 : w) = \bot$$

and then evaluating the right-hand side, which also yields the \bot value:

$$u(f)([call_{\ell_1}(f)][\hat{u}_0](w)) = u(f)(\hat{u}_0(f)(\ell_1 : w)) = u(f)(\bot) = \bot$$

Tables 1 and 2 have been constructed in this way, and they illustrate Theorems 2 and 3, respectively. Notice that every entry in the second column of the two tables approximates the corresponding entry in the third column.

Table 1: An illustration of the first part of the proof.

<table>
<thead>
<tr>
<th>k</th>
<th>$call_{\ell_0}(\hat{u}_k(f))(w)$</th>
<th>$u(f)([call_{\ell_1}(f)]\hat{u}_k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>\bot</td>
<td>\bot</td>
</tr>
<tr>
<td>1</td>
<td>\bot</td>
<td>\bot</td>
</tr>
<tr>
<td>2</td>
<td>\bot</td>
<td>\bot</td>
</tr>
<tr>
<td>3</td>
<td>\bot</td>
<td>\bot</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 2: An illustration of the second part of the proof.

<table>
<thead>
<tr>
<th>k</th>
<th>$u_k(f)([call_{\ell_1}(f)]\hat{u})$</th>
<th>$call_{\ell_0}(\hat{u}(f))(w)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>\bot</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

7 Discussion

The main difficulty in giving a correctness proof for the transformation algorithm lies in the fact that it is not straightforward to relate the source functional program (and its semantics) to the resulting intensional program (and its semantics). Some of the complications are outlined below:
• The intensional program that results from the transformation has significant syntactic differences from the source extensional one. Note in particular that the formal parameters in the latter have become individual definitions in the former. Therefore, a syntax-based correctness proof may face considerable difficulties. The authors have undertaken one such approach, attempting to identify a sequence of intensional transformations that correspond to the notion of β-reduction. Although some interesting results were obtained, this approach proved to be quite harder than the one presented in this paper.

• The precise formal definition of Yaghi’s transformation algorithm, which we gave in §3, helped us formulate the exact result that we had to demonstrate. It should be noted here that the authors tried at first to formalize Yaghi’s non-referentially transparent scheme, using the notion of an occurrence of a function call in the program. However, such an approach proved to be quite inflexible and did not easily lead to the right intuitions.

• The proof requires a double induction: an outer computational one and an inner structural one. Moreover, notice that the statement in Lemma 1 is not symmetric: the intensional environment appears in both sides of the statements, while the extensional one appears in only one of them.

• It would be expected that Lemma 1 can be demonstrated directly, i.e., without first showing that the right-hand side of the statement approximates the left, and vice-versa. However, such a proof does not seem to be possible.

Finally, we should mention that the transformation algorithm and the proof can readily be extended for a language that allows “outside” variables as well as nullary variable definitions. Moreover, the techniques illustrated in this paper can be extended to apply to more “demanding” intensionalization procedures, such as for example the ones that have been suggested for higher-order functional programs [16, 11].

References

