On the Computational Complexity of Stratified Negation in Linear-Time Temporal Logic Programming

(Extended Abstract)

ISLIP'99 Topics: Temporal Logic Programming, Semantics of Intensional Languages

Costas D. Koutras Christos Nomikos
Graduate Program in Logic, Algorithms & Computation
Department of Mathematics, University of Athens
Panepistimioupolis, 157 84 Zographou
e-mail: c Koutras@cc.ece.ntua.gr, nomikos@cs.ntua.gr

Abstract

A lot of formal approaches to the "right" semantics of negation in logic programming have been proposed during the last two decades, and the importance of this area for Non-Monotonic Reasoning and Deductive Databases has been stressed. In sharp contrast, only a few papers have been devoted to the semantics of negation in temporal logic programming, despite the intuitive importance and the practical implication of this issue. Recently, P. Rondogiannis proposed a simple syntactic criterion, based on the cycle sum test, which singles out the Chronolog programs for which a well-defined semantics of stratified negation can be given. In this paper, we show that this test is computationally affordable, and thus of great practical importance too: we sketch an algorithm for the cycle sum test, whose time requirements are linearly related to the "size" of the input Chronolog program.
1 Introduction

In this paper, we examine the computational cost of the cycle sum syntactic check for

temporal logic programs in the language Chronolog. Programs that pass successfully

this test are guaranteed to possess a well-defined negation semantics. The treatment

of negation in Logic Programming has been a major research issue for the last twenty

years and is closely related to methods and techniques developed in the area of Non-

Monotonic Reasoning. An overview of the approaches suggested in both areas is given

in [BDK97, AB94]. On the contrary, only a few approaches exist to the treatment of

negation in Temporal Logic Programming.

Recently, P. Rondogiannis considered in [Ron98] stratified negation in the tem-

poral logic programming language Chronolog [Wad88, OW88, OW92]. Stratified

negation was originally suggested by Apt, Blair and Walker [ABW88] and has been

generalized by T. Przymusinski to local stratification in [Prz88]. In [Ron98] Rondo-

giannis argues that the simple stratification test of [ABW88] is very restrictive for

negation in temporal logic programming, since even very simple programs with a

clear meaning fail to pass the test. For example, he mentions the following simple

Chronolog program:

\[
\begin{align*}
\text{first } & \text{ p(a).} \\
\text{next } & \text{ p(X) } \leftarrow \text{ p(X).}
\end{align*}
\]

which fails to pass the test because of the circularity in the second clause. However,

this simple program is not truly circular and an appropriate test for Chronolog should

take into account this kind of temporal circularities. Thus, P. Rondogiannis suggests

using the cycle sum test [Wad81] and shows that the Chronolog programs which pass

this test have a classical logic programming analog which is locally stratified, and

thus have a unique perfect model. The cycle sum test was originally suggested by

W. Wadge [Wad81] and used to ensure that a given temporal functional program of

the language Lucid is deadlock free. It was later extended by S. Matthews [Mat95]

to a wider context in the area of functional programming. We investigate here the

complexity of this test in the Chronolog context and show that its time requirements

are reasonable for practical implementations.

The rest of this extended abstract is organized as follows: in Section 2 we give the

necessary definitions for the Chronolog language and a model-preserving translation

of Chronolog programs into classical ones. Section 3 provides the necessary formal

details for the cycle sum test. Section 4 discusses its computational complexity and

Section 5 concludes the paper with a discussion of possible improvements and open

questions.
2 The Chronolog Language

The programming language Chronolog [Wad88, OW88, OW92] is based on the simple temporal logic TL, which uses a linear notion of time with unbounded future. The time model employed is the set \mathcal{N} of natural numbers. The operator first is used to express the first moment in time (i.e. time 0), while next refers to the next moment in time. The syntax of TL extends the syntax of first-order logic with two additional formation rules: if A is a formula, then so are $\text{first} A$ and $\text{next} A$.

The semantics of temporal formulas of TL is formally expressed in the following definition [OW88, OW92]:

Definition 2.1 A temporal interpretation I of the temporal logic TL comprises a non-empty set D, called the domain of the interpretation, over which the variables range, together with an element of D for each variable; for each n-ary function symbol, an element of $[D^n \to D]$; and for each n-ary predicate symbol, an element of $[\mathcal{N} \to 2^{D^n}]$.

Following, we can define the ternary satisfaction relation $|=_{I,t} A$ denoting that a formula A is true at a moment t in some temporal interpretation I.

Definition 2.2 The semantics of the elements of the temporal logic TL are given inductively as follows:

1. If $f(e_0, \ldots, e_{n-1})$ is a term, then $I(f(e_0, \ldots, e_{n-1})) = I(f)(I(e_0), \ldots, I(e_{n-1}))$.
2. For any n-ary predicate symbol p and terms e_0, \ldots, e_{n-1},
 $|=_{I,t} p(e_0, \ldots, e_{n-1})$ iff $(I(e_0), \ldots, I(e_{n-1})) \in I(p)(t)$
3. $|=_{I,t} \neg A$ iff it is not the case that $|=_{I,t} A$
4. $|=_{I,t} A \land B$ iff $|=_{I,t} A$ and $|=_{I,t} B$
5. $|=_{I,t} A \lor B$ iff $|=_{I,t} A$ or $|=_{I,t} B$
6. $|=_{I,t} (\forall x) A$ iff $|=_{I[t,d/x],t} A$ for all $d \in D$, where the interpretation $I[d/x]$ is the same as I except that the variable x is assigned the value d.
7. $|=_{I,t} \text{first} A$ iff $|=_{I,0} A$
8. $|=_{I,t} \text{next} A$ iff $|=_{I,t+1} A$

If a formula A is true in a temporal interpretation I at all moments in time, it is said to be true in I (we write $|=_I A$) and I is called a model of A.

We obtain the syntax of Chronolog programs by extending the syntax of classical logic programs [Llo87] with two temporal operators, namely first and next. A temporal reference is a sequence (possibly empty) of the above operators; we denote
by \(\text{next}^k \) a sequence of \(k \) \text{next} operators. A \textit{canonical temporal reference} is a temporal reference of the form \textit{first} \(\text{next}^k \). An \textit{open temporal reference} is a temporal reference of the form \(\text{next}^k \). A \textit{temporal atom} is an atom preceded by either a canonical or an open temporal reference. We consider an extension of Chronolog that allows negation in the bodies of the rules.

A \textit{temporal clause} in Chronolog is a formula of the form:

\[
H \leftarrow A_1, \ldots, A_k, \neg B_1, \ldots, \neg B_m.
\]

where \(H, A_1, \ldots, A_k, B_1, \ldots, B_m \) are temporal atoms and \(k, m \geq 0 \). If \(k = m = 0 \), the clause is said to be a \textit{unit temporal clause}. A \textit{temporal program} is a finite set of \textit{temporal clauses}. As a simple example, the following program from [Wad81] simulates the operation of the traffic lights:

\[
\begin{align*}
\text{first light(green)}. \\
\text{next light(amber)} & \leftarrow \text{light(green)}. \\
\text{next light(red)} & \leftarrow \text{light(amber)}. \\
\text{next light(green)} & \leftarrow \text{light(red)}.
\end{align*}
\]

2.1 Translating into Classical Logic Programming

A Chronolog program can be easily transformed into a classical one, in a way that "preserves" its model theory. Intuitively, given a temporal program \(P \), we obtain its classical counterpart \(P^* \) by adding to the predicates of \(P \) an explicit representation of time.

The transformation comprises the following steps:

- Replace every canonical temporal atom \(\text{first} \text{next}^k \) \(p(e_0, \ldots, e_{n-1}) \) in \(P \) by the classical atom \(p(s^k(0), e_0, \ldots, e_{n-1}) \).

- Let \(T \) be a variable that does not appear in \(P \). Replace every open temporal atom of the form \(\text{next}^k \) \(p(e_0, \ldots, e_{n-1}) \) by the classical atom \(p(s^k(T), e_0, \ldots, e_{n-1}) \).

- In the body of every clause that contains at least one open temporal atom, add the atom \(\text{nat}(T) \), whose purpose is to restrict the time parameter to obtaining only natural number values. Add to the program the axiomatization of \(\text{nat} \), as well.

The result of this transformation is called a \textit{time-classical} logic program. Also, terms of the form \(s^k(0) \) are called (ground) \textit{time-terms}.

A Herbrand interpretation of a time-classical program is called \textit{normal} if: (i) the only atoms contained regarding the predicate \(\text{nat} \), are all the atoms of the set \(\text{Nat} = \{ \text{nat}(s^k(0)) \mid k \geq 0 \} \).

225
(ii) all the other atoms that it contains are of the form $p(s^k(0), e_0, \ldots, e_{n-1})$, where $k \geq 0$. In [Ron98], the following is shown:

Theorem 2.3 ([Ron98]) Let P be a temporal logic program and P^* be its classical counterpart. Then, there is a one-to-one correspondence between the temporal Herbrand models of P and the normal Herbrand models of P^*.

3 Stratified Negation and the Cycle Sum Test

Time-classical programs have a specific structure: the first argument of each predicate corresponds to the implicit time parameter of the initial temporal program. As shown in [Ron98], the special structure of these programs allows us to define a syntactic test, which when passed, ensures that the time-classical program is *locally stratified* [Prz88]. Locally stratified logic programs have a unique perfect model, which is taken as their intended meaning. We can then take the corresponding temporal Herbrand model as the intended meaning of the initial temporal program. Let A be an atom appearing in a time-classical logic program; then, $time(A)$ is the term that corresponds to the first argument of A.

Definition 3.1

$$d_{ij}(H, A) = \begin{cases}
 k - m, & \text{if } time(H) = s^k(0) \text{ and } time(A) = s^m(0) \\
 k - m, & \text{if } time(H) = s^k(T) \text{ and } time(A) = s^m(T) \\
 k - m, & \text{if } time(H) = s^k(T) \text{ and } time(A) = s^m(0) \\
 -\infty, & \text{if } time(H) = s^k(0) \text{ and } time(A) = s^m(T)
\end{cases}$$

Let P^* be a time-classical logic program and C be a clause in P^*. Let H be the head of C and A be an atom (different from $\text{nat}(T)$) in the body of C. The *temporal difference* dif between H and A is defined as follows:

$$d_{if}(H, A) = \begin{cases}
 k - m, & \text{if } time(H) = s^k(0) \text{ and } time(A) = s^m(0) \\
 k - m, & \text{if } time(H) = s^k(T) \text{ and } time(A) = s^m(T) \\
 k - m, & \text{if } time(H) = s^k(T) \text{ and } time(A) = s^m(0) \\
 -\infty, & \text{if } time(H) = s^k(0) \text{ and } time(A) = s^m(T)
\end{cases}$$

Informally speaking, $d_{if}(H, A)$ expresses how far, that is how many time-points in the worst case, the head H of a clause leads the atom A in the body of the clause. The value $-\infty$ used in the last case of the above definition, signifies that in this case it is not possible to determine a finite integer value by which the head leads the atom in the body in the worst case (because the head refers to a specific moment in time while the atom in the body has an open temporal reference).

The dif measure is used for the construction of the *cycle sum graph* of a given time-classical logic program. The following definition provides the formal details:
Definition 3.2 Let \(P^* \) be a given time-classical logic program. The cycle sum graph of \(P^* \) is a directed weighted graph \(CG_{P^*} = (V, E) \). The set \(V \) of vertices of \(CG_{P^*} \) is the set of predicate symbols appearing in \(P^* \). The set \(E \) of edges consists of triples \((p, q, w)\), where \(p, q \in V \) and \(w \in \mathbb{Z} \cup \{-\infty\} \). An edge \((p, q, w)\) belongs to \(E \) if in \(P^* \) there exists a clause with an atom \(H \) as its head and an atom \(A \) in its body, such that the predicate symbol of \(H \) is \(p \), the predicate symbol of \(A \) is \(q \) and \(\text{dif}(H, A) = w \).

We can now state the cycle sum test:

Definition 3.3 A time-classical logic program \(P^* \) passes the cycle sum test if the sum of weights across every cycle in \(CG_{P^*} \) is positive.

The following theorem from [Ron98] justifies the use of the cycle sum test and reveals its importance for the semantics of negation in temporal logic programming:

Theorem 3.4 ([Ron98]) Let \(P^* \) be a time-classical logic program that passes the cycle sum test. Then \(P^* \) has a unique perfect model which is also normal.

4 The Computational Complexity of Checking the Stratifiability of Chronolog Programs

In this section we sketch a decision procedure for checking whether a Chronolog program passes the cycle sum test. The algorithm we sketch creates the cycle sum (multi)graph and constructs out of it a suitable sub-graph, on which a shortest-path algorithm is executed. The cycle sum test can be actually performed using any shortest-path algorithm operating on graphs with negative weights (like the Bellman-Ford algorithm for instance) [CLR90]: if after the execution of the algorithm a potentially shortest path can be further shortened, then a negative cycle exists in the graph.

In our approach we employ a fast scaling algorithm of Gabow and Tarjan [GT89], which runs in \(O(|V| \cdot |E| \cdot \log(|V| \cdot W)) \) time, where \(W \) is the magnitude of the largest-magnitude weight of any edge in the graph. Typical scaling algorithms for shortest paths solve initially the problem considering only the highest order bits of the weights. Progressively they increase the number of bits considered and refine the solution. After \(\log W \) scales (refinements) the optimum solution is computed (all the bits have been considered). The Gabow-Tarjan algorithm uses a different scaling method: at each scale instead of an optimal solution it computes an approximate solution (which is easier to compute) and it uses \(\log |V| \) additional scales to ensure that the last approximate solution is exact.

The shortest path algorithm is not executed directly in the cycle sum graph \(P^* \) for the following reasons. Firstly, \(CG_{P^*} \) is actually a directed multigraph, as it may
contain parallel edges with the same direction. This happens in the case an atom A appears in the body of two different clauses with head H. For the purposes of the cycle sum test, parallel edges can be eliminated, reducing significantly the size of the graph; Secondly, in this sub-graph we have to replace the $-\infty$ value with an appropriate finite negative value. A value like the smallest number available in the computer on which the algorithm is run will affect the efficiency of the scaling algorithm. Thus, we proceed to the following choice: assume that b is the largest positive weight value occurring in SCG_{P^*}. Our algorithm proceeds to replace every $-\infty$ value with $-(|V| - 1) \cdot b$; as shown below the output of the cycle sum test algorithm remains correct. Finally we must take care of cycles of length zero. The cycle sum test fails for graphs containing cycles with zero weight, while shortest path algorithms work properly in this case. We overcome this difficulty with a simple trick: we decrease each negative or zero weight by a small amount (we have chosen it to be $\frac{1}{|V|}$). In order to eliminate fractional weights, we multiply the weight of every edge with $|V|$.

We can now define the graph SCG_{P^*} on which the cycle sum test is performed.

Definition 4.1 Given a cycle sum graph CG_{P^*} of a Chronolog program P with set of vertices V, define SCG_{P^*} to be the graph constructed from CG_{P^*} using the following procedure: (i) Delete all parallel edges (with the same direction) connecting two vertices, except for the one with minimum weight. (ii) Replace weights equal to $-\infty$ with $-(|V| - 1) \cdot b$. (iii) Subtract $\frac{1}{|V|}$ from every non-positive weight. (iv) Multiply all weights with $|V|$.

Theorem 4.2 The cycle sum graph CG_{P^*} of a Chronolog program P contains a non-positive cycle if and only if SCG_{P^*} contains a negative cycle.

Proof: Consider the vertices of any cycle in the original multigraph. These vertices also form a cycle in the graph constructed after the first step of the transformation, because elimination of parallel edges do not affect adjacency. Furthermore if the original cycle was non-positive, then the same holds for the cycle in the new graph.

The selection of the value $-(|V| - 1) \cdot b$ to represent $-\infty$ in the second step guarantees that whenever an edge with original weight $-\infty$ is contained in a cycle, the cycle cannot be positive: in the extreme case where the cycle is a Hamiltonian cycle and all the other edges are weighted with b, the weight of this cycle is 0. Therefore, the graph constructed the first two steps contains a non-positive cycle if and only if the original graph does so.

After the third step a negative cycle will obviously remain negative. A cycle with zero weight cannot contain only positive weight edges. Thus after the decrement of negative and zero weights this cycle will become negative. Finally a positive cycle must contain at least one positive edge and at most $|V| - 1$ non-positive edges. Since its original weight was at least 1, the new weight after this step is at least $\frac{1}{|V|}$, i.e.
it remains positive. Finally the multiplication with a positive constant in the fourth step do not affect the sign of the weight of any cycle.

Consequently if CG_{P^*} has a non-positive cycle then there is a negative cycle in SCG_{P^*}. On the other hand if CG_{P^*} contains only positive cycles, all cycles in SCG_{P^*} are positive.

In order to run the Gabow-Tarjan algorithm on SCG_{P^*}, we must also specify a proper source for the shortest paths. The source can be selected arbitrarily if SCG_{P^*} is strongly connected. However, since all vertices of any cycle must in the same connected component, if SCG_{P^*} is not strongly connected, we can perform the cycle sum test independently for every strongly connected component. Strongly connected components can be found in time $O(|V|+|E|)$ [CLR90]. Thus we can assume, without loss of generality, that SCG_{P^*} is strongly connected.

We proceed now to sketch the decision procedure: given a Chronolog program P, we denote by L the length of P, by r the number of rules in P, by m the maximum number of predicates that appear in a rule of P and by p the total number of predicate names that appear in P, which is also the number of vertices in SCG_{P^*}.

Algorithm CST(P)

Input: a Chronolog program P

Output: true if P passes the cycle sum test, false otherwise

Step 1: construct CG_{P^*} out of P, and simultaneously eliminate parallel edges

Step 2: to get the weight assignment SCG_{P^*}

for each edge (v_1, v_2):

if $w((v_1, v_2)) = -\infty$ then $w((v_1, v_2)) = -(p-1) \cdot p \cdot b - 1$

else if $w((v_1, v_2)) \leq 0$ then $w((v_1, v_2)) := w((v_1, v_2)) \cdot p - 1$

else $w((v_1, v_2)) := w((v_1, v_2)) \cdot p$

Step 3: choose arbitrarily a source s

run GABOW-TARJAN on the output of step 2, with source s

if a negative-weighted cycle is detected then return false

else return true

Theorem 4.3 If the algorithm CST returns true, the input program P passes the cycle sum test and thus has a well-defined negation semantics. Moreover, algorithm CST runs within time $O(L + \sqrt{p} \cdot \min(p^2, r \cdot m) \cdot \log(p \cdot b))$.

Proof: The first part of the theorem (correctness of the algorithm) follows from the results of P. Rondogiannis [Ron98], Theorem 4.2 and the properties of the GABOW-TARJAN algorithm [GT89].

We now compute the running time of CST. The first step can be carried out in $O(L)$ time, actually during the parsing of the Chronolog program. The graph constructed has $|V| = p$ vertices (one for each predicate name). The number of edges is $O(\min(p^2, r \cdot m))$, since for each of the r rules at most m edges can be added to SCG_{P^*}, and the total number of edges in a graph with p vertices is at most $p(p-1)/2$. 229
The second step simply examines all edges, so it runs in $O(\min(p^2, r \cdot m))$ time. Finally, the last step, runs the GABOW-TARJAN algorithm, in graph SCG_{F^*}. The value of parameter W is $(p-1) \cdot p \cdot b + 1$ (the absolute value of the weight that replaced $-\infty$). The complexity of this step is $O(\sqrt{p} \cdot \min(p^2, r \cdot m) \cdot \log(p \cdot b))$. Thus the total time required for the three steps (using the fact that $\log(p \cdot b) = O(\log(p \cdot b))$) is $O(L + \sqrt{p} \cdot \min(p^2, r \cdot m) \cdot \log(p \cdot b))$.

5 Conclusion

The result of this paper contributes to the important topic of negation in temporal logic programming, and in particular, its computational properties. Two important research directions are calling for our attention:

- further exploration of negation semantics in Chronolog and full identification of possible connections between the negation semantics for classical logic programs and temporal ones

- identification of the computational complexity issues for various problems in Chronolog programming as well as in the underlying TL temporal language.

We hope that we will be able to say more on this in the final version of this paper, especially with respect to the second research direction.

References

